Integrable equations on time scales

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable Equations on Time Scales

Integrable systems are usually given in terms of functions of continuous variables (on R), in terms of functions of discrete variables (on Z), and recently in terms of functions of q-variables (on Kq). We formulate the Gel’fand-Dikii (GD) formalism on time scales by using the delta differentiation operator and find more general integrable nonlinear evolutionary equations. In particular they yie...

متن کامل

Theory of hybrid differential equations on time scales

‎In this paper‎, ‎we develop the theory of hybrid differential‎ ‎equations on time scales‎. ‎An existence theorem for hybrid‎ ‎differential equations on time scales is given under Lipschitz ‎conditions‎. ‎Some fundamental fractional differential inequalities‎ ‎are also established which are utilized to prove the existence of‎ ‎extremal solutions‎. ‎Necessary tools are considered and the‎ ‎compa...

متن کامل

First order linear fuzzy dynamic equations on time scales

In this paper, we study the concept of generalized differentiability for fuzzy-valued functions on time scales. Usingthe derivative of the product of two functions, we provide solutions to first order linear fuzzy dynamic equations. Wepresent some examples to illustrate our results.

متن کامل

Hyers-Ulam Stability of Non-Linear Volterra Integro-Delay Dynamic System with Fractional Integrable Impulses on Time Scales

This manuscript presents Hyers-Ulam stability and Hyers--Ulam--Rassias stability results of non-linear Volterra integro--delay dynamic system on time scales with fractional integrable impulses. Picard fixed point theorem  is used for obtaining  existence and uniqueness of solutions. By means of   abstract Gr"{o}nwall lemma, Gr"{o}nwall's inequality on time scales, we establish  Hyers-Ulam stabi...

متن کامل

Bi - Hamiltonian structures for integrable systems on regular time scales

A construction of the bi-Hamiltonian structures for integrable systems on regular time scales is presented. The trace functional on an algebra of δ-pseudo-differential operators, valid on an arbitrary regular time scale, is introduced. The linear Poisson tensors and the related Hamiltonians are derived. The quadratic Poisson tensors is given by the use of the recursion operators of the Lax hier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2005

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.2116380