Integer linear programming formulations for double roman domination problem
نویسندگان
چکیده
منابع مشابه
Improved Mixed Integer Linear Programing Formulations for Roman Domination Problem
The Roman domination problem is considered. An improvement of two existing Integer Linear Programing (ILP) formulations is proposed and a comparison between the old and new ones is given. Correctness proofs show that improved linear programing formulations are equivalent to the existing ones regardless of the variables relaxation and usage of lesser number of constraints.
متن کاملTotal double Roman domination in graphs
Let $G$ be a simple graph with vertex set $V$. A double Roman dominating function (DRDF) on $G$ is a function $f:Vrightarrow{0,1,2,3}$ satisfying that if $f(v)=0$, then the vertex $v$ must be adjacent to at least two vertices assigned $2$ or one vertex assigned $3$ under $f$, whereas if $f(v)=1$, then the vertex $v$ must be adjacent to at least one vertex assigned $2$ or $3$. The weight of a DR...
متن کاملImproved Linear Integer Programming Formulations of Nonlinear Integer Problems*
A variety of combinatorial problems (e.g., in capital budgeting, scheduling, allocation) can be expressed as a linear integer programming problem. However, the standard devices for doing this often produce an inordinate number of variables and constraints, putting the problem beyond the practical reach of available integer programming methods. This paper presents new formulation techniques for ...
متن کاملConcise Integer Linear Programming Formulations for Dependency Parsing
We formulate the problem of nonprojective dependency parsing as a polynomial-sized integer linear program. Our formulation is able to handle non-local output features in an efficient manner; not only is it compatible with prior knowledge encoded as hard constraints, it can also learn soft constraints from data. In particular, our model is able to learn correlations among neighboring arcs (sibli...
متن کاملMixed integer linear programming formulations for probabilistic constraints
We introduce two new formulations for probabilistic constraints based on extended disjunctive formulations. Their strength results from considering multiple rows of the probabilistic constraints together. The properties of the first can be used to construct hierarchies of relaxations for probabilistic constraints, while the second provides computational advantages over other formulations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2019
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2019.1679142