Inorganic semiconducting materials for flexible and stretchable electronics
نویسندگان
چکیده
منابع مشابه
Inorganic semiconducting materials for flexible and stretchable electronics
Recent progress in the synthesis and deterministic assembly of advanced classes of single crystalline inorganic semiconductor nanomaterial establishes a foundation for high-performance electronics on bendable, and even elastomeric, substrates. The results allow for classes of systems with capabilities that cannot be reproduced using conventional wafer-based technologies. Specifically, electroni...
متن کاملStretchable, curvilinear electronics based on inorganic materials.
All commercial forms of electronic/optoelectronic technologies use planar, rigid substrates. Device possibilities that exploit bio-inspired designs or require intimate integration with the human body demand curvilinear shapes and/or elastic responses to large strain deformations. This article reviews progress in research designed to accomplish these outcomes with established, high-performance i...
متن کاملInorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics
Rapid advances in semiconductor nanomaterials, techniques for their assembly, and strategies for incorporation into functional systems now enable sophisticated modes of functionality and corresponding use scenarios in electronics that cannot be addressed with conventional, wafer-based technologies. This short review highlights enabling developments in the synthesis of oneand two-dimensional sem...
متن کاملFlexible and stretchable electronics for biointegrated devices.
Advances in materials, mechanics, and manufacturing now allow construction of high-quality electronics and optoelectronics in forms that can readily integrate with the soft, curvilinear, and time-dynamic surfaces of the human body. The resulting capabilities create new opportunities for studying disease states, improving surgical procedures, monitoring health/wellness, establishing human-machin...
متن کاملMaterials and mechanics for stretchable electronics.
Recent advances in mechanics and materials provide routes to integrated circuits that can offer the electrical properties of conventional, rigid wafer-based technologies but with the ability to be stretched, compressed, twisted, bent, and deformed into arbitrary shapes. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated with elastomeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Flexible Electronics
سال: 2017
ISSN: 2397-4621
DOI: 10.1038/s41528-017-0003-z