Initialization of Fuzzy C-Means Using Kernel Density Estimation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Kernel Fuzzy c-Means

The size of everyday data sets is outpacing the capability of computational hardware to analyze these data sets. Social networking and mobile computing alone are producing data sets that are growing by terabytes every day. Because these data often cannot be loaded into a computer’s working memory, most literal algorithms (algorithms that require access to the full data set) cannot be used. One ...

متن کامل

An Improved Initialization Method For Fuzzy C-Means Clustering Using Density Based Approach For Microarray Data

An improved initialization method for fuzzy cmeans (FCM) method is proposed which aims at solving the two important issues of clustering performance affected by initial cluster centers and number of clusters. A density based approach is needed to identify the closeness of the data points and to extract cluster center. DBSCAN approach defines ε–neighborhood of a point to determine the core objec...

متن کامل

Semi-supervised Kernel-Based Fuzzy C-Means

This paper presents a semi-supervised kernel-based fuzzy c-means algorithm called S2KFCM by introducing semi-supervised learning technique and the kernel method simultaneously into conventional fuzzy clustering algorithm. Through using labeled and unlabeled data together, S2KFCM can be applied to both clustering and classification tasks. However, only the latter is concerned in this paper. Expe...

متن کامل

Using homogeneous fuzzy cluster ensembles to address fuzzy c-means initialization drawbacks

The goal of clustering algorithms is to reveal patterns by partitioning the data into clusters, based on the similarity of the data, without any prior knowledge. The fuzzy approach to the clustering problem, where the fuzzy c-means clustering algorithm (FCM) is one of the eminent representatives, provides more flexibility as it allows data to have partial membership into several clusters simult...

متن کامل

A new initialization method for the Fuzzy C-Means Algorithm using Fuzzy Subtractive Clustering

Fuzzy C-means (FCM) is a popular algorithm using the partitioning approach to solve problems in data clustering. A drawback to FCM, however, is that it requires the number of clusters and the clustering partition matrix to be set a priori. Typically, the former is set by the user and the latter is initialized randomly. This approach may cause the algorithm get stuck in a local optimum because F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Korean Institute of Information and Communication Engineering

سال: 2011

ISSN: 2234-4772

DOI: 10.6109/jkiice.2011.15.8.1659