Inhomogeneous Neumann initial–boundary value problem for the nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Inverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملDiscrete Neumann boundary value problem for a nonlinear equation with singular φ-Laplacian
which is a discrete analogue of the Neumann problem about the rotationally symmetric spacelike graphs with a prescribed mean curvature function in some Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, whereψ (s) := ∫ s 0 dt g(t) ,ψ –1 is the inverse function ofψ , and H :R× [2,N – 1]Z →R is continuous with respect to the first variable. The proofs of the main results are based upon the Br...
متن کاملStroboscopic Averaging for the Nonlinear Schrödinger Equation
In this paper, we are concerned with an averaging procedure, – namely Stroboscopic averaging [SVM07, CMSS10] –, for highly-oscillatory evolution equations posed in a (possibly infinite dimensional) Banach space, typically partial differential equations (PDEs) in a high-frequency regime where only one frequency is present. We construct a highorder averaged system whose solution remains exponenti...
متن کاملOpen boundaries for the nonlinear Schrödinger equation
We present a new algorithm, the Time Dependent Phase Space Filter (TDPSF) which is used to solve time dependent Nonlinear Schrodinger Equations (NLS). The algorithm consists of solving the NLS on a box with periodic boundary conditions (by any algorithm). Periodically in time we decompose the solution into a family of coherent states. Coherent states which are outgoing are deleted, while those ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2013
ISSN: 0022-0396
DOI: 10.1016/j.jde.2013.07.036