Information gain directed genetic algorithm wrapper feature selection for credit rating
نویسندگان
چکیده
منابع مشابه
Fuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملFilter- versus wrapper-based feature selection for credit scoring
We address the problem of credit scoring as a classification and feature subset selection problem. Based on the current framework of sophisticated feature selection methods, we identify features that contain the most relevant information to distinguish good loan payers from bad loan payers. The feature selection methods are validated on several real world datasets with different types of classi...
متن کاملFeature selection in corporate credit rating prediction
Credit rating assessment is a complicated process in which many parameters describing a company are taken into consideration and a grade is assigned, which represents the reliability of a potential client. Such assessment is expensive, because domain experts have to be employed to perform the rating. One way of lowering the costs of performing the rating is to use an automated rating procedure....
متن کاملWrapper for Ranking Feature Selection
We propose a new feature selection criterion not based on calculated measures between attributes, or complex and costly distance calculations. Applying a wrapper to the output of a new attribute ranking method, we obtain a minimum subset with the same error rate as the original data. The experiments were compared to two other algorithms with the same results, but with a very short computation t...
متن کاملFeature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets
Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Soft Computing
سال: 2018
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2018.04.033