Influence Area of Overlap Singularity in Multilayer Perceptrons
نویسندگان
چکیده
منابع مشابه
Fast training of multilayer perceptrons
Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...
متن کاملActive Learning in Multilayer Perceptrons
We propose an active learning method with hidden-unit reduction, which is devised specially for multilayer perceptrons (MLP). First, we review our active learning method, and point out that many Fisher-information-based methods applied to MLP have a critical problem: the information matrix may be singular. To solve this problem, we derive the singularity condition of an information matrix, and ...
متن کاملQuantile regression with multilayer perceptrons
We consider nonlinear quantile regression involving multilayer perceptrons (MLP). In this paper we investigate the asymptotic behavior of quantile regression in a general framework. First by allowing possibly non-identifiable regression models like MLP's with redundant hidden units, then by relaxing the conditions on the density of the noise. In this paper, we present an universal bound for the...
متن کاملFunctional preprocessing for multilayer perceptrons
In many applications, high dimensional input data can be considered as sampled functions. We show in this paper how to use this prior knowledge to implement functional preprocessings that allow to consistently reduce the dimension of the data even when they have missing values. Preprocessed functions are then handled by a numerical MLP which approximates the theoretical functional MLP. A succes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2873811