منابع مشابه
Inflection Points, Extatic Points and Curve Shortening
As the name suggests, Curve Shortening is a gradientflow for the length functional on the space of immersed curves in the surfaceM. One can therefore try to use Curve Shortening to prove existence of geodesics by variational methods. In my talk at S’Agarro I observed that geodesics always are curves without self-tangencies, and recalled that the space of such curves has many different connected...
متن کاملInflection points and singularities on C-curves
We show that all so-called C-curves are affine images of trochoids or sine curves and use this relation to investigate the occurrence of inflection points, cusps, and loops. The results are summarized in a shape diagram of C-Bézier curves, which is useful when using C-Bézier curves for curve and surface modeling. 2003 Elsevier B.V. All rights reserved.
متن کاملTransformed density rejection with inflection points
The acceptance-rejection algorithm is often used to sample from non-standard distributions. For this algorithm to be efficient, however, the user has to create a hat function that majorizes and closely matches the density of the distribution to be sampled from. There are many methods for automatically creating such hat functions, but these methods require that the user transforms the density so...
متن کاملInflection points of coherent reliability polynomials
Examples of coherent reliability polynomials with more than one inflection point are given. They are created by examining the structure of a reliability polynomial using a convex basis.
متن کاملIdentification of inflection points and cusps on rational curves
Using homogeneous coordinates, a rational curve can be represented in a nonrational form. Based on such a nonrational representation of a curve, a simple method to identify inflection points and cusps on 2-D and 3-D rational curves is proposed. © 1997 Elsevier Science B.V.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2013
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.87.083518