Inflection points and asymptotic lines on Lagrangian surfaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflection Points on Real Plane Curves Having Many Pseudo-Lines

A pseudo-line of a real plane curve C is a global real branch of C(R) that is not homologically trivial in P(R). A geometrically integral real plane curve C of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines. Suppose that the genus of the normalization of C is equal to d− 2. We show ...

متن کامل

Lagrangian fibrations on Hilbert schemes of points on K3 surfaces

Let HilbS be the Hilbert scheme of g points on a K3 surface S. Suppose that PicS = ZC where C is a smooth curve with C = 2(g − 1)n. We prove that HilbS is a Lagrangian fibration.

متن کامل

Inflection points and singularities on C-curves

We show that all so-called C-curves are affine images of trochoids or sine curves and use this relation to investigate the occurrence of inflection points, cusps, and loops. The results are summarized in a shape diagram of C-Bézier curves, which is useful when using C-Bézier curves for curve and surface modeling.  2003 Elsevier B.V. All rights reserved.

متن کامل

Inflection Points, Extatic Points and Curve Shortening

As the name suggests, Curve Shortening is a gradientflow for the length functional on the space of immersed curves in the surfaceM. One can therefore try to use Curve Shortening to prove existence of geodesics by variational methods. In my talk at S’Agarro I observed that geodesics always are curves without self-tangencies, and recalled that the space of such curves has many different connected...

متن کامل

Identification of inflection points and cusps on rational curves

Using homogeneous coordinates, a rational curve can be represented in a nonrational form. Based on such a nonrational representation of a curve, a simple method to identify inflection points and cusps on 2-D and 3-D rational curves is proposed. © 1997 Elsevier Science B.V.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Geometry and its Applications

سال: 2014

ISSN: 0926-2245

DOI: 10.1016/j.difgeo.2014.04.012