Infinitely Many Solutions For A Fourth-order Kirchhoff Type Elliptic Problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Fourth–order Nonlinear Elliptic System

In this paper we study the existence of solutions for the nonlinear elliptic system ⎪⎪⎨ ⎪⎪⎩ Δu−Δu+V1(x)u = fu(x,u,v), Δv−Δv+V2(x)v = fv(x,u,v), u,v ∈ H(R) x ∈ R , where V1(x) and V2(x) are positive continue functions. Under some assumptions on fu(x,u,v) and fv(x,u,v) , we prove the existence of many nontrivial high and small energy solutions by variant Fountain theorems. This generalizes the re...

متن کامل

Existence of Infinitely Many Solutions for Perturbed Kirchhoff Type Elliptic Problems with Hardy Potential

In this article, by using critical point theory, we show the existence of infinitely many weak solutions for a fourth-order Kirchhoff type elliptic problems with Hardy potential.

متن کامل

Multiple solutions for a fourth-order nonlinear elliptic problem

The existence of multiple solutions for a class of fourth-order elliptic equation with respect to the generalized asymptotically linear conditions is established by using the minimax method and Morse theory.

متن کامل

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics and Computer Science

سال: 2014

ISSN: 2008-949X

DOI: 10.22436/jmcs.08.01.04