Infinitely Many Homoclinic Orbits for 2nth-Order Nonlinear Functional Difference Equations Involving thep-Laplacian

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Homoclinic Orbits for 2nth-Order Nonlinear Functional Difference Equations Involving the p-Laplacian

and Applied Analysis 3 F2 F t, xn, . . . , x0 W t, x0 − H t, xn, . . . , x0 , for every t ∈ Z, W,H are continuously differentiable in x0 and xn, . . . , x0, respectively. Moreover, there is a bounded set J ⊂ Z such that H t, xn, . . . , x0 ≥ 0; 2.2 F3 There is a constant μ > p such that 0 < μW t, x0 ≤ W ′ 2 t, x0 x0, ∀ t, x0 ∈ Z × R \ {0} ; 2.3 F4 H t, 0, . . . , 0 ≡ 0, and there is a constant ...

متن کامل

Infinitely Many Homoclinic Solutions for Second Order Nonlinear Difference Equations with p-Laplacian

We employ Nehari manifold methods and critical point theory to study the existence of nontrivial homoclinic solutions of discrete p-Laplacian equations with a coercive weight function and superlinear nonlinearity. Without assuming the classical Ambrosetti-Rabinowitz condition and without any periodicity assumptions, we prove the existence and multiplicity results of the equations.

متن کامل

INFINITELY MANY HOMOCLINIC ORBITS OF SECOND-ORDER p-LAPLACIAN SYSTEMS

In this paper, we give several new sufficient conditions for the existence of infinitely many homoclinic orbits of the second-order ordinary p-Laplacian system d dt (|u̇(t)|p−2u̇(t)) − a(t)|u(t)|p−2u(t) +∇W (t, u(t)) = 0, where p > 1, t ∈ R, u ∈ R , a ∈ C(R,R) and W ∈ C(R × R ,R) are no periodic in t, which greatly improve the known results due to Rabinowitz and Willem.

متن کامل

Homoclinic Orbits of Second-order Nonlinear Difference Equations

We establish existence criteria for homoclinic orbits of secondorder nonlinear difference equations by using the critical point theory in combination with periodic approximations.

متن کامل

EXISTENCE OF PERIODIC SOLUTIONS FOR 2nTH-ORDER NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS

By using the critical point theory, the existence of periodic solutions for 2nth-order nonlinear pLaplacian difference equations is obtained. The main approaches used in our paper are variational techniques and the Saddle Point theorem. The problem is to solve the existence of periodic solutions for 2nth-order p-Laplacian difference equations. The results obtained successfully generalize and co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2012

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2012/297618