Inferring Genetic Interactions via a Data-Driven Second Order Model
نویسندگان
چکیده
منابع مشابه
Inferring Genetic Interactions via a Data-Driven Second Order Model
Genetic/transcriptional regulatory interactions are shown to predict partial components of signaling pathways, which have been recognized as vital to complex human diseases. Both activator (A) and repressor (R) are known to coregulate their common target gene (T). Xu et al. (2002) proposed to model this coregulation by a fixed second order response surface (called the RS algorithm), in which T ...
متن کاملInferring genetic interactions from comparative fitness data
Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that gene...
متن کاملEnhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملA Data-driven Method for Crowd Simulation using a Holonification Model
In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...
متن کاملInferring Genetic Networks via Subspace System Identification
Gene expression time series data are promising to infer genetic regulatory networks. State space formulation can be used to model dynamic influence between genes. Subspace algorithms are generally an efficient way to identify this system. Due to the sparsity of genomic data standard subspace algorithms cannot be used. I will discuss these problems and present approaches to overcome this issue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Genetics
سال: 2012
ISSN: 1664-8021
DOI: 10.3389/fgene.2012.00071