Inexact SARAH algorithm for stochastic optimization
نویسندگان
چکیده
منابع مشابه
An Inexact-Fuzzy-Stochastic Optimization Model for a Closed Loop Supply Chain Network Design Problem
The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design and the complex interactions among various uncertain parameters are challenging the capabilities of the developed tools. The aim of this paper, therefore, is to propose a n...
متن کاملInexact{restoration Algorithm for Constrained Optimization
We introduce a new model algorithm for solving nonlinear programming problems. No slack variables are introduced for dealing with inequality constraints. Each iteration of the method proceeds in two phases. In the rst phase, feasibility of the current iterate is improved and in second phase the objective function value is reduced in an approximate feasible set. The point that results from the s...
متن کاملAn Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization
We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the search direction (i...
متن کاملInexact proximal stochastic gradient method for convex composite optimization
We study an inexact proximal stochastic gradient (IPSG) method for convex composite optimization, whose objective function is a summation of an average of a large number of smooth convex functions and a convex, but possibly nonsmooth, function. Variance reduction techniques are incorporated in the method to reduce the stochastic gradient variance. The main feature of this IPSG algorithm is to a...
متن کاملAn inexact modified subgradient algorithm for nonconvex optimization
We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2020
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2020.1818081