Inexact multisplitting methods for linear complementarity problems
نویسندگان
چکیده
منابع مشابه
Modulus-based synchronous multisplitting iteration methods for linear complementarity problems
To reduce the communication among processors and improve the computing time for solving linear complementarity problems, we present a two-step modulus-based synchronous multisplitting iteration method and the corresponding symmetric modulus-based multisplitting relaxation methods. The convergence theorems are established when the system matrix is an H+-matrix, which improve the existing converg...
متن کاملA multisplitting method for symmetric linear complementarity problems
Over the years, many methods for solving the linear complementarity problem (LCP) have been developed. Most of these methods have their origin in solving a system of linear equations. In particular, much attention has recently been paid on the class of iterative methods called the splitting method, which is an extension of the matrix splitting method for solving a system of linear equations suc...
متن کاملGlobal Modulus-Based Synchronous Multisplitting Multi-Parameters TOR Methods for Linear Complementarity Problems
In 2013, Bai and Zhang constructed modulus-based synchronous multisplitting methods for linear complementarity problems and analyzed the corresponding convergence. In 2014, Zhang and Li studied the weaker convergence results based on linear complementarity problems. In 2008, Zhang et al. presented global relaxed non-stationary multisplitting multi-parameter method by introducing some parameters...
متن کاملNonstationary Relaxed Multisplitting Methods for Solving Linear Complementarity Problems with H−matrices
In this paper we consider some non stationary relaxed synchronous and asynchronous multisplitting methods for solving the linear complementarity problems with their coefficient matrices being H−matrices. The convergence theorems of the methods are given,and the efficiency is shown by numerical tests.
متن کاملInexact semismooth Newton methods for large-scale complementarity problems
The semismooth Newton method is a nonsmooth Newton-type method applied to a suitable reformulation of the complementarity problem as a nonlinear and nonsmooth system of equations. It is one of the standard methods for solving these kind of problems, and it can be implemented in an inexact way so that all linear systems of equations have to be solved only inexactly. However, from a practical poi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2009
ISSN: 0377-0427
DOI: 10.1016/j.cam.2008.02.013