Inductive Zero-Shot Image Annotation via Embedding Graph
نویسندگان
چکیده
منابع مشابه
Transductive Multi-view Embedding for Zero-Shot Recognition and Annotation
Most existing zero-shot learning approaches exploit transfer learning via an intermediate-level semantic representation such as visual attributes or semantic word vectors. Such a semantic representation is shared between an annotated auxiliary dataset and a target dataset with no annotation. A projection from a low-level feature space to the semantic space is learned from the auxiliary dataset ...
متن کاملMulti-Label Zero-Shot Learning via Concept Embedding
Zero Shot Learning (ZSL) enables a learning model to classify instances of an unseen class during training. While most research in ZSL focuses on single-label classification, few studies have been done in multi-label ZSL, where an instance is associated with a set of labels simultaneously, due to the difficulty in modeling complex semantics conveyed by a set of labels. In this paper, we propose...
متن کاملZero-shot Learning via Shared-Reconstruction-Graph Pursuit
Zero-shot learning (ZSL) aims to recognize objects from novel unseen classes without any training data. Recently, structuretransfer based methods are proposed to implement ZSL by transferring structural knowledge from the semantic embedding space to image feature space to classify testing images. However, we observe that such a knowledge transfer framework may suffer from the problem of the geo...
متن کاملTransductive Unbiased Embedding for Zero-Shot Learning
Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bi...
متن کاملZero-Shot Sketch-Image Hashing
Recent studies show that large-scale sketch-based image retrieval (SBIR) can be efficiently tackled by cross-modal binary representation learning methods, where Hamming distance matching significantly speeds up the process of similarity search. Providing training and test data subjected to a fixed set of pre-defined categories, the cutting-edge SBIR and cross-modal hashing works obtain acceptab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2925383