Inductive limit of general linear groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

characterization of projective general linear groups

let $g$ be a finite group and $pi_{e}(g)$ be the set of element orders of $g $. let $k in pi_{e}(g)$ and $s_{k}$ be the number of elements of order $k $ in $g$. set nse($g$):=${ s_{k} | k in pi_{e}(g)}$. in this paper, it is proved if $|g|=|$ pgl$_{2}(q)|$, where $q$ is odd prime power and nse$(g)= $nse$($pgl$_{2}(q))$, then $g cong $pgl$_

متن کامل

Absolute order in general linear groups

This paper studies a partial order on the general linear group GL(V ) called the absolute order, derived from viewing GL(V ) as a group generated by reflections, that is, elements whose fixed space has codimension one. The absolute order on GL(V ) is shown to have two equivalent descriptions: one via additivity of length for factorizations into reflections and the other via additivity of fixed ...

متن کامل

Web bases for the general linear groups

Let V be the representation of the quantized enveloping algebra of gl(n) which is the q-analogue of the vector representation and let V ∗ be the dual representation. We construct a basis for ⊗r (V ⊕ V ∗) with favorable properties similar to those of Lusztig’s dual canonical basis. In particular our basis is invariant under the bar involution and contains a basis for the subspace of invariant te...

متن کامل

Unipotent Conjugacy in General Linear Groups

Hence, it is easy to count the orbits of GL n q under the conjugation action of U n q but seems hard to do the same for the group U n q itself! We fix some further notation. Let V n q be the vector space of column vectors, a module for GL n q . Recall that a flag is a totally ordered set of n− 1 nonzero proper subspaces of V n q . For g in GL n q let f g be the number of flags fixed by g, so it...

متن کامل

Hook Modules for General Linear Groups

For an arbitrary infinite field k of characteristic p > 0, we completely describe the structure of a block of the algebraic monoid Mn(k) (all n×n matrices over k), or, equivalently, a block of the Schur algebra S(n, p), whose simple modules are indexed by p-hook partitions. This leads to a character formula for certain simple GLn(k)-modules, valid for all n and all p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1998

ISSN: 2156-2261

DOI: 10.1215/kjm/1250518008