Induced model structures for higher categories
نویسندگان
چکیده
We give a new criterion guaranteeing existence of model structures left-induced along functor admitting both adjoints. This works under the hypothesis that induces idempotent adjunctions at homotopy category level. As an application, we construct on cubical sets, prederivators, marked simplicial sets and spaces modeling ∞ \infty -categories -groupoids.
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
E2 model structures for presheaf categories
The purpose of this paper is to develop analogs of the E2 model structures of Dwyer, Kan and Stover for categories related to pointed bisimplicial presheaves and simplicial presheaves of spectra. The development is by analogy with and builds on the work of Dwyer, Kan and Stover [1], [2], along with later work of Goerss and Hopkins [3]. The technical challenge met in the present paper is that no...
متن کاملModel Structures for Homotopy of Internal Categories
The aim of this paper is to describe Quillen model category structures on the category CatC of internal categories and functors in a given finitely complete category C. Several non-equivalent notions of internal equivalence exist; to capture these notions, the model structures are defined relative to a given Grothendieck topology on C. Under mild conditions on C, the regular epimorphism topolog...
متن کاملStrict Model Structures for Pro-categories
We show that if C is a proper model category, then the pro-category pro-C has a strict model structure in which the weak equivalences are the levelwise weak equivalences. This is related to a major result of [10]. The strict model structure is the starting point for many homotopy theories of pro-objects such as those described in [5], [17], and [19].
متن کاملModel Structures on pro - Categories
We introduce a notion of a ltered model structure and use this notion to produce various model structures on pro-categories. This framework generalizes the examples of [13], [15], and [16]. We give several examples, including a homotopy theory for G-spaces, where G is a pronite group. The class of weak equivalences is an approximation to the class of underlying weak
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2022
ISSN: ['2330-1511']
DOI: https://doi.org/10.1090/proc/15982