Independent origins of self-compatibility in Arabidopsis thaliana
نویسندگان
چکیده
منابع مشابه
Independent origins of self-compatibility in Arabidopsis thaliana.
The evolution from outcrossing based on self-incompatibility (SI) to a selfing system is one of the most prevalent transitions in flowering plants. It has been suggested that the loss of SI in Arabidopsis thaliana is associated with pseudogene formation at the SCR male component of the S locus. Recent work, however, suggests that alternative alleles with large deletions at the S locus are also ...
متن کاملIndependent S-Locus Mutations Caused Self-Fertility in Arabidopsis thaliana
A common yet poorly understood evolutionary transition among flowering plants is a switch from outbreeding to an inbreeding mode of mating. The model plant Arabidopsis thaliana evolved to an inbreeding state through the loss of self-incompatibility, a pollen-rejection system in which pollen recognition by the stigma is determined by tightly linked and co-evolving alleles of the S-locus receptor...
متن کاملThe transition to self-compatibility in Arabidopsis thaliana and evolution within S-haplotypes over 10 Myr.
A recent investigation found evidence that the transition of Arabidopsis thaliana from ancestral self-incompatibility (SI) to full self-compatibility occurred very recently and suggested that this occurred through a selective fixation of a nonfunctional allele (PsiSCR1) at the SCR gene, which determines pollen specificity in the incompatibility response. The main evidence is the lack of polymor...
متن کاملTOR-Dependent and -Independent Pathways Regulate Autophagy in Arabidopsis thaliana
Autophagy is a critical process for recycling of cytoplasmic materials during environmental stress, senescence and cellular remodeling. It is upregulated under a wide range of abiotic stress conditions and is important for stress tolerance. Autophagy is repressed by the protein kinase target of rapamycin (TOR), which is activated in response to nutrients and in turn upregulates cell growth and ...
متن کاملGenes controlling fertilization-independent seed development in Arabidopsis thaliana.
We have cloned two genes, FIS1 and FIS2, that control both fertilization independent seed development and postpollination embryo development in Arabidopsis. These genes confer female gametophytic phenotypes. FIS2 encodes a protein with a C2H2 zinc-finger motif and three putative nuclear localization signals, indicating that it is likely to be a transcription factor. FIS1 encodes a protein with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Ecology
سال: 2007
ISSN: 0962-1083
DOI: 10.1111/j.1365-294x.2007.03605.x