Independence, odd girth, and average degree
نویسندگان
چکیده
منابع مشابه
Independence, odd girth, and average degree
We prove several best-possible lower bounds in terms of the order and the average degree for the independence number of graphs which are connected and/or satisfy some odd girth condition. Our main result is the extension of a lower bound for the independence number of triangle-free graphs of maximum degree at most 3 due to Heckman and Thomas [A New Proof of the Independence Ratio of Triangle-Fr...
متن کاملGirth, minimum degree, independence, and broadcast independence
An independent broadcast on a connected graph $G$is a function $f:V(G)to mathbb{N}_0$such that, for every vertex $x$ of $G$, the value $f(x)$ is at most the eccentricity of $x$ in $G$,and $f(x)>0$ implies that $f(y)=0$ for every vertex $y$ of $G$ within distance at most $f(x)$ from $x$.The broadcast independence number $alpha_b(G)$ of $G$is the largest weight $sumlimits_{xin V(G)}f(x)$of an ind...
متن کاملThe Independence Number of Graphs with Large Odd Girth
Let G be an r-regular graph of order n and independence number α(G). We show that if G has odd girth 2k + 3 then α(G) ≥ n1−1/kr1/k . We also prove similar results for graphs which are not regular. Using these results we improve on the lower bound of Monien and Speckenmeyer, for the independence number of a graph of order n and odd girth 2k + 3. AMS Subject Classification. 05C15 §
متن کاملThe Independence Number of Dense Graphs with Large Odd Girth
Let G be a graph with n vertices and odd girth 2k+3. Let the degree of a vertex v of G be d1(v). Let (G) be the independence number of G. Then we show (G) 2 ( k 1 k ) "X v2G d1(v) 1 k 1 #(k 1)=k . This improves and simpli es results proven by Denley [1]. AMS Subject Classi cation. 05C35 Let G be a graph with n vertices and odd girth 2k + 3. Let di(v) be the number of points of degree i from a v...
متن کاملOnline coloring graphs with high girth and high odd girth
We give an upper bound for the online chromatic number of graphs with high girth and for graphs with high oddgirth generalizing Kierstead’s algorithm for graphs that contain neither a C3 or C5 as an induced subgraph. keywords: online algorithms, combinatorial problems
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2010
ISSN: 0364-9024
DOI: 10.1002/jgt.20518