Independence number of edge‐chromatic critical graphs
نویسندگان
چکیده
Let G $G$ be a simple graph with maximum degree Δ ( ) ${\rm{\Delta }}(G)$ and chromatic index χ ′ $\chi ^{\prime} (G)$ . A classical result of Vizing shows that either = (G)={\rm{\Delta or + 1 }}(G)+1$ is called edge- }}$ -critical if connected, − e (G-e)={\rm{\Delta for every ∈ E $e\in E(G)$ an n $n$ -vertex graph. conjectured α $\alpha , the independence number at most 2 $\frac{n}{2}$ The current best on this conjecture, shown by Woodall, < 3 5 (G)\lt \frac{3n}{5}$ We show any given ε 0 $\varepsilon \in (0,1)$ there exist positive constants d ${d}_{0}(\varepsilon )$ D ${D}_{0}(\varepsilon such minimum least ${d}_{0}$ ${D}_{0}$ then \left(\frac{1}{2}+\varepsilon \right)n$ In particular, we $d$ ≥ 4.5 11.5 }}(G)\ge {(d+1)}^{4.5d+11.5}$ 7 12 4 19 \left.\left\{\displaystyle \begin{array}{cc}\frac{7n}{12} & \,\text{if}\,\,d=3,\\ \frac{4n}{7} \,\text{if}\,\,d=4,\\ \frac{d+2+\sqrt[3]{(d-1)d}}{2d+4+\sqrt[3]{(d-1)d}}n\lt \,\text{if}\,\,d\ge 19.\end{array}\right.$
منابع مشابه
On the independence number of edge chromatic critical graphs
In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree ∆ and independence number α(G), α(G) ≤ |V | 2 . It is known that α(G) < 3∆−2 5∆−2 |V |. In this paper we improve this bound when ∆ ≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α(G) ≤ 3∆−3 5∆−3 |V | when ∆ ≥ 5 and n2 ≤ 2(∆− 1).
متن کاملEdge number critical triangle free graphs with low independence numbers
The structure of all triangle free graphs G = (V,E) with |E|−6|V |+α(G) = 0 is determined, yielding an affirmative answer to a question of Stanis law Radziszowsky and Donald Kreher.
متن کاملK-independence Critical Graphs
Let k be a positive integer and G = (V (G), E(G)) a graph. A subset S of V (G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k − 1. The maximum cardinality of a k-independent set of G is the k-independence number βk(G). In this paper, we study the properties of graphs for which the k-independence number changes whenever an edge or vertex is ...
متن کاملSemi-regular graphs of minimum independence number
There are many functions of the degree sequence of a graph which give lower bounds on the independence number of the graph. In particular, for every graph G, α(G) ≥ R(d(G)), where R is the residue of the degree sequence of G. We consider the precision of this estimate when it is applied to semi-regular degree sequences. We show that the residue nearly always gives the best possible estimate on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Theory
سال: 2022
ISSN: ['0364-9024', '1097-0118']
DOI: https://doi.org/10.1002/jgt.22825