Indecomposable integers in real quadratic fields
نویسندگان
چکیده
منابع مشابه
Real Quadratic Number Fields
a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...
متن کاملInfrastructure in Real Quadratic Function Fields Infrastructure in Real Quadratic Function Fields
The principal topic of this article is to extend Shanks' infrastructure ideas in real quadratic number elds to the case of real quadratic congruence function elds. In this view, this paper is intended as a \low-brow" approach to the theory of ideals and operations in the ideal class group. We summarize some basic properties of ideals and provide elementary proofs of the main results. For the pu...
متن کاملOverpartitions and Real Quadratic Fields
It is shown that counting certain differences of overpartition functions is equivalent to counting elements of a given norm in appropriate real quadratic fields.
متن کاملCryptography in Real Quadratic Congruence Function Fields
The Diffie-Hellman key exchange protocol as well as the ElGamal signature scheme are based on exponentiation modulo p for some prime p. Thus the security of these schemes is strongly tied to the difficulty of computing discrete logarithms in the finite field Fp. The Diffie-Hellman protocol has been generalized to other finite groups arising in number theory, and even to the sets of reduced prin...
متن کاملMinimal Mahler Measure in Real Quadratic Fields
We consider upper and lower bounds on the minimal height of an irrational number lying in a particular real quadratic field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2020
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2019.11.005