Indecomposable 2-groups with all automorphisms central

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Absolute Central Automorphisms of Finite $p$-Groups

Let $G$ be a finite group. The automorphism $sigma$ of a group $G$ is said to be an absolute central automorphism, if for all $xin G$, $x^{-1}x^{sigma}in L(G)$, where $L(G)$ be the absolute centre of $G$. In this paper, we study  some properties of absolute central automorphisms of a given finite $p$-group.

متن کامل

Abelian Groups, Homomorphisms and Central Automorphisms of Nilpotent Groups

In this paper we find a necessary and sufficient condition for a finite nilpotent group to have an abelian central automorphism group.

متن کامل

Indecomposable Linear Groups

Let G be a noncyclic group of order 4, and let K = Z, Z (2) and Z 2 be the ring of rational integers, the localization of Z at the prime 2 and the ring of 2-adic integers, respectively. We describe, up to conjugacy, all of the indecomposable subgroups in the group GL(m, K) which are isomorphic to G. The first explicit description of the Z-representations of the noncyclic group G of order 4 was ...

متن کامل

On equality of absolute central and class preserving automorphisms of finite $p$-groups

Let $G$ be a finite non-abelian $p$-group and $L(G)$ denotes the absolute center of $G$. Also, let $Aut^{L}(G)$ and $Aut_c(G)$ denote the group of all absolute central and the class preserving automorphisms of $G$, respectively. In this paper, we give a necessary and sufficient condition for $G$ such that $Aut_c(G)=Aut^{L}(G)$. We also characterize all finite non-abelian $p$-groups of order $p^...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1985

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700009308