Incremental Material Flow Analysis with Bayesian Inference

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material Recognition: Bayesian Inference or SVMs?

Material recognition is an important subtask in computer vision. In this paper, we aim for the identification of material categories from a single image captured under unknown illumination and view conditions. Therefore, we use several features which cover various aspects of material appearance and perform supervised classification using Support Vector Machines. We demonstrate the feasibility o...

متن کامل

Incremental Flow Analysis

interpretation is a technique for ow analysis widely used in the area of logic programming. Until now it has been used only for the global compilation of Prolog programs. But the programming language Prolog enables the programmer to change the program during run time using the built-in predicates assert and retract. To support the generation of eecient code for programs using these dynamic data...

متن کامل

Performing Incremental Bayesian Inference by Dynamic Model Counting

The ability to update the structure of a Bayesian network when new data becomes available is crucial for building adaptive systems. Recent work by Sang, Beame, and Kautz (AAAI 2005) demonstrates that the well-known Davis-Putnam procedure combined with a dynamic decomposition and caching technique is an effective method for exact inference in Bayesian networks with high density and width. In thi...

متن کامل

Bayesian Nonparametric and Parametric Inference

This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.

متن کامل

Supplemental Material to Network Plasticity as Bayesian Inference

where μ1 = 0.3, μ2 = 0.9, σ1 = 0.1, σ2 = 0.2 and c = 0.3. In Fig. 1D we used a prior pS(θ) = pS(θ1)pS(θ2), with pS(θi) given by a normal distribution (μ = 0.3, σ = 0.35). A learning rate of η = 0.005 was used to sampled trajectories which had a length of 50 and 300 time steps in Fig. 1C and F, respectively. In Fig. 1F the time-discrete version of the synaptic sampling algorithm (7) was used, wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Industrial Ecology

سال: 2017

ISSN: 1088-1980,1530-9290

DOI: 10.1111/jiec.12698