Increasing variational solutions for a nonlinear p-laplace equation without growth conditions
نویسندگان
چکیده
منابع مشابه
MULTIPLE SOLUTIONS FOR THE p-LAPLACE EQUATION WITH NONLINEAR BOUNDARY CONDITIONS
In this note, we show the existence of at least three nontrivial solutions to the quasilinear elliptic equation −∆pu + |u|p−2u = f(x, u) in a smooth bounded domain Ω of RN with nonlinear boundary conditions |∇u|p−2 ∂u ∂ν = g(x, u) on ∂Ω. The proof is based on variational arguments.
متن کاملPositive solutions for P-Laplace problems with nonlinear time-fractional differential equation
In this paper, we study the existence and multiplicity of positive solutions for semi-linear elliptic equations with a sign-changing weight function in weighted Sobolev spaces. By investigating the compact embedding theorem and based on the extraction of the Palais-Smale sequence in the Nehari manifold which is a subset of the weighted Sobolev spaces, we derive the existence of the multiple pos...
متن کاملBlow-up of Solutions to a p-Laplace Equation
Consider two perfectly conducting spheres in a homogeneous medium where the current-electric field relation is the power law. Electric field E blows up in the L∞-norm as δ, the distance between the conductors, tends to zero. We give here a concise rigorous justification of the rate of this blow-up in terms of δ. If the current-electric field relation is linear, see similar results obtained earl...
متن کاملVariational solutions for the discrete nonlinear Schrödinger equation
The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrödinger equation i∂zψn = −D(ψn+1 + ψn−1 − 2ψn) − γ|ψn|ψn, (1) whereD is a dispersion (or diffraction) coefficient, and γ is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial fu...
متن کاملConservative Solutions to a Nonlinear Variational Wave Equation
We establish the existence of a conservative weak solution to the Cauchy problem for the nonlinear variational wave equation utt − c(u)(c(u)ux)x = 0, for initial data of finite energy. Here c(·) is any smooth function with uniformly positive bounded values. Mathematics Subject Classification (2000): 35Q35
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2011
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-011-0191-4