Incorporating word embeddings in unsupervised morphological segmentation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Morphological Expansion of Small Datasets for Improving Word Embeddings

We present a language independent, unsupervised method for building word embeddings using morphological expansion of text. Our model handles the problem of data sparsity and yields improved word embeddings by relying on training word embeddings on artificially generated sentences. We evaluate our method using small sized training sets on eleven test sets for the word similarity task across seve...

متن کامل

Morphological Word-Embeddings

Linguistic similarity is multi-faceted. For instance, two words may be similar with respect to semantics, syntax, or morphology inter alia. Continuous word-embeddings have been shown to capture most of these shades of similarity to some degree. This work considers guiding word-embeddings with morphologically annotated data, a form of semisupervised learning, encouraging the vectors to encode a ...

متن کامل

Poor Man’s Word-Segmentation: Unsupervised Morphological Analysis for Indonesian

We present a partially new fully unsupervised algorithm for morphological segmentation of a arbitrary natural language with only one-slot concatenative morphology. The behaviour of the algorithm is examined in detail for Indonesian as it is a good approximation of such a language. The underlying theory makes no assumptions on whether the language is prefixing or suffixing, or whether affixes ar...

متن کامل

Unsupervised Word Segmentation in Context

This paper extends existing word segmentation models to take non-linguistic context into account. It improves the token F-score of a top performing segmentation models by 2.5% on a 27k utterances dataset. We posit that word segmentation is easier in-context because the learner is not trying to access irrelevant lexical items. We use topics from a Latent Dirichlet Allocation model as a proxy for...

متن کامل

Unsupervised Morphology Induction Using Word Embeddings

We present a language agnostic, unsupervised method for inducing morphological transformations between words. The method relies on certain regularities manifest in highdimensional vector spaces. We show that this method is capable of discovering a wide range of morphological rules, which in turn are used to build morphological analyzers. We evaluate this method across six different languages an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Natural Language Engineering

سال: 2020

ISSN: 1351-3249,1469-8110

DOI: 10.1017/s1351324920000406