Incomplete k-Fibonacci and k-Lucas Numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the properties of k-Fibonacci and k-Lucas numbers

In this paper, some properties of k−Fibonacci and k−Lucas numbers are derived and proved by using matrices S = k 2 1 2 k 2+4 2 k 2 and M = 

متن کامل

ON THE GENERALIZED ORDER-k FIBONACCI AND LUCAS NUMBERS

In this paper we consider the generalized order-k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order-k Fibonacci and Lucas numbers.

متن کامل

On the Spectral Norms of r-Circulant Matrices with the k-Fibonacci and k-Lucas Numbers

Abstract In this paper, we consider the k -Fibonacci and k -Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N . Let A = Cr(Fk,0, Fk,1, · · · , Fk,n−1) and B = Cr(Lk,0, Lk,1, · · · , Lk,n−1) be r -circulant matrices. Afterwards, we give upper and lower bounds for the spectral norms of matrices A and B. In addition, we obtain some bounds for the spectral norms of Hadamard and Kronecker products of these ma...

متن کامل

On the Norms of Circulant Matrices with the (k,h)-Fibonacci and (k,h)-Lucas Numbers

In this paper, we give upper and lower bounds for the spectral norms of circulant matrices A n = Circ(F n−1) and B n = Circ(L (k,h) n and L (k,h) n are the (k, h)-Fibonacci and (k, h)-Lucas numbers, then we obtain some bounds for the spectral norms of Kronecker and Hadamard products of these matrices.

متن کامل

The Spectral Norms of Circulant Matrices Involving (k,h)-Fibonacci and (k,h)-Lucas Numbers

This paper is an improving of the work from [6], in which the upper and lower bounds for the spectral norms of the matrices An = Circ(F (k,h) 0 , F (k,h) 1 , · · · , F (k,h) n−1 ) and Bn = Circ(L (k,h) 0 , L (k,h) 1 , · · · , L (k,h) n−1 ) are established. In this new paper, we compute the spectral norms of these matrices. Mathematics Subject Classification: 15A45, 15A60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Journal of Mathematics

سال: 2013

ISSN: 2314-8071

DOI: 10.1155/2013/107145