Including many-body screening into self-consistent calculations: Tight-binding model studies with the Gutzwiller approximation
نویسندگان
چکیده
منابع مشابه
Self-consistent tight-binding molecular-dynamics method for cluster studies
The Hubbard-type tight-binding ~TB! Hamiltonian is generalized to incorporate effects of charge transfer efficiently into the TB ~Slater-Koster-type! parameters. The generalization is such that charge transfer as well as Madelung-type interactions are included in a self-consistent manner. In particular, the intrasite Coulomb interactions of our Hubbard Hamiltonian are calculated from the chemic...
متن کاملMany-body tight-binding model for aluminum nanoparticles
A new, parametrized many-body tight-binding model is proposed for calculating the potential energy surface for aluminum nanoparticles. The parameters have been fitted to reproduce the energies for a variety of aluminum clusters sAl2, Al3, Al4, Al7, Al13d calculated recently by the PBE0/MG3 method as well as the experimental face-centered-cubic cohesive energy, lattice constant, and a small set ...
متن کاملSelf consistent tight binding model for dissociable water.
We report results of development of a self consistent tight binding model for water. The model explicitly describes the electrons of the liquid self consistently, allows dissociation of the water and permits fast direct dynamics molecular dynamics calculations of the fluid properties. It is parameterized by fitting to first principles calculations on water monomers, dimers, and trimers. We repo...
متن کاملSelf-consistent tight binding model adapted for hydrocarbon systems
A self-consistent environment-dependent tight binding method is presented that was developed to simulate eigenvalue spectra, electron densities and Coulomb potential distributions for hydrocarbon systems. The method builds on a non-selfconsistent environment-dependent tight binding model for carbon [Tang et al., Phys. Rev. B 53, 979 (1996)] with parameters added to describe hydrocarbon bonds an...
متن کاملThermal transport for many-body tight-binding models
We clarify some aspects of the calculation of the thermal transport coefficients. For a tight-binding Hamiltonian we discuss the approximate nature of the charge current and the thermal current obtained by Peierls substitution which is also identical to the equation of motion technique. We address the issue of choosing an appropriate basis for making the Peierls construction for transport calcu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.83.245139