Incipient fault diagnosis of analog circuits based on wavelet transform and improved deep convolutional neural network
نویسندگان
چکیده
To enhance the reliability of analog circuits in electrical systems, this letter proposes a novel incipient fault diagnosis method by integrating wavelet transform(WT) and improved convolutional neural network. Different from traditional methods, where feature extraction classification are separately designed performed, aims to automatically learn features classify type faults simultaneously. An network named multi-channel compactness (MC-CNN) is proposed, which can obtain complementary rich information multi-scale components extracted transform. Moreover, we adopt center loss as an auxiliary function maximize interclass separability intraclass samples. The proposed fully evaluated with Sallen-Key bandpass filter circuit four-opamp biquad high-pass circuit. experimental results demonstrate that very effective for diagnosis, has higher accuracy than other typical methods.
منابع مشابه
Short term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملIncipient fault diagnosis of rolling element bearing based on wavelet packet transform and energy operator
This paper mainly deals with the issue of incipient fault diagnosis for rolling element bearing. Firstly, an envelope demodulation technique based on wavelet packet transform and energy operator is applied to extract the fault feature of vibration signal. Secondly, the relative spectral entropy of envelope spectrum and the gravity frequency are combined to construct two-dimensional features vec...
متن کاملAccurate Fault Classification of Transmission Line Using Wavelet Transform and Probabilistic Neural Network
Fault classification in distance protection of transmission lines, with considering the wide variation in the fault operating conditions, has been very challenging task. This paper presents a probabilistic neural network (PNN) and new feature selection technique for fault classification in transmission lines. Initially, wavelet transform is used for feature extraction from half cycle of post-fa...
متن کاملFault Diagnosis of Industrial Robot Bearings Based on Discrete Wavelet Transform and Artificial Neural Network
Industrial robots have long been used in production systems in order to improve productivity, quality and safety in automated manufacturing processes. An unforeseen robot stoppage due to different reasons has the potential to cause an interruption in the entire production line, resulting in economic and production losses. The majority of the previous research on industrial robots health monitor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Electronics Express
سال: 2021
ISSN: ['1349-2543', '1349-9467']
DOI: https://doi.org/10.1587/elex.18.20210174