In vitro cell viability of PHBV/PLGA nanofibrous membrane for tissue engineering
نویسندگان
چکیده
منابع مشابه
Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملNanofibrous scaffold in tissue engineering
Dear Friends, Nanofibrous scaffolds have been a major revolution in the field of tissue engineering which may improve the health and quality of life by enhancing tissue function. These are the artificial extracellular matrices which offer natural surroundings for tissue formation. Owing to their high surface to volume ratio, nanofibrous scaffolds increase cell adhesion, proliferation, and diffe...
متن کاملNanofibrous Scaffolds for Tissue Engineering Applications
The discipline of tissue engineering opens up the ways for repair and regenerate damaged organs and tissues. In the current work biomimetic nanofibrous scaffolds were fabricated by electrospinning. Poly-L-lactic acid (PLLA) was blended with collagen and gelatin to fabricate PLLLA-collagen and PLLA-gelatin fibrous scaffolds respectively. Pure PLLA and gelatin scaffolds served as controls. All th...
متن کاملNanofibrous composites for tissue engineering applications.
Development of artificial matrices for tissue engineering is a crucial area of research in the field of regenerative medicine. Successful tissue scaffolds, in analogy with the natural mammalian extracellular matrix (ECM), are multi-component, fibrous, and on the nanoscale. In addition, to this key morphology, artificial scaffolds must have mechanical, chemical, surface, and electrical propertie...
متن کاملFabrication and characterization of nanofibrous tricuspid valve scaffold based on polyurethane for heart valve tissue engineering
Objective(s): Tissue engineering represents a new approach to solve the current complications of the heart valve replacements by offering viable valve prosthesis with growth and remodeling capability. In this project, electrospinning and dip coating techniques were used to fabricate heart valve constructs from medical grade polyurethane (PU). Methods: Fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaysian Journal of Fundamental and Applied Sciences
سال: 2019
ISSN: 2289-599X,2289-5981
DOI: 10.11113/mjfas.v15n4.1229