Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting

نویسندگان

چکیده

Electricity inspection is important to support sustainable development and core the marketing of electric power. In addition, it contributes effective management power companies their financial performance. Continuous improvement in penetration rate new energy generation can improve environmental standards promote development, but creates challenges for electricity inspection. Traditional methods are time-consuming quite inefficient, which hinders firms. this paper, a load-forecasting model based on an improved moth-flame-algorithm-optimized extreme learning machine (IMFO-ELM) proposed use A chaotic map linear decreasing weight introduced convergence ability traditional moth-flame algorithm obtain optimal parameters ELM. Abnormal data points screened out determine causes abnormal occurrences by analyzing prediction results user’s actual consumption. The show that, compared with existing PSO-ELM MFO-ELM models, root mean square error reduced at least 1.92% under same conditions, supports application IMFO-ELM power-load-forecasting-based detection method efficiency inspection, enhance user experience, contribute intelligence level firms development.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Daily Electricity Load Curves

Short term electricity load forecasting is a well-known problem, and many neural computing approaches for solving it have been proposed in recent years. In this paper, we argue in favour of its decomposition into two subproblems, and propose a solution for one of them: the prediction, en bloc, of the daily load profile, or configuration, for the different hours of a particular future date. From...

متن کامل

Optimized Clusters for Disaggregated Electricity Load Forecasting

• To account for the variation of EDF’s (the French electrical company) portfolio following the liberalization of the electrical market, it is essential to disaggregate the global load curve. The idea is to disaggregate the global signal in such a way that the sum of disaggregated forecasts significantly improves the prediction of the whole global signal. The strategy is to optimize, a prelimin...

متن کامل

A Practical Approach for Electricity Load Forecasting

This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current statu...

متن کامل

Incremental Ensemble Learning for Electricity Load Forecasting

The efforts of the European Union (EU) in the energy supply domain aim to introduce intelligent grid management across the whole of the EU. The target intelligent grid is planned to contain 80% of all meters to be smart meters generating data every 15 minutes. Thus, the energy data of EU will grow rapidly in the very near future. Smart meters are successively installed in a phased roll-out, and...

متن کامل

modification of nanoclay for improving the physico-mechanical properties of dental adhesives

هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2022

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su142113942