Improved Small-Sample Estimation of Nonlinear Cross-Validated Prediction Metrics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-validated bagged prediction of survival.

In this article, we show how to apply our previously proposed Deletion/Substitution/Addition algorithm in the context of right-censoring for the prediction of survival. Furthermore, we introduce how to incorporate bagging into the algorithm to obtain a cross-validated bagged estimator. The method is used for predicting the survival time of patients with diffuse large B-cell lymphoma based on ge...

متن کامل

Reliable estimation of externally validated prediction errors for QSAR models

In most cases of QSAR modelling the final model used to make predictions, is not known a priori but has to be selected in a data driven fashion (e.g. selection of principal components, variable selection, selection of the best mathematical modelling technique). Reliable estimation of externally validated prediction errors under this model uncertainty is still a challenge in chemoinformatics. To...

متن کامل

Tracking cross - validated estimates of prediction error as studies accumulate ∗

In recent years “reproducibility” has emerged as a key factor in evaluating applications of statistics to the biomedical sciences, for example learning predictors of disease phenotypes from high-throughput “omics” data. In particular, “validation” is undermined when error rates on newly acquired data are sharply higher than those originally reported. More precisely, when data are collected from...

متن کامل

Improved variance estimation along sample eigenvectors

Second order statistics estimates in the form of sample eigenvalues and sample eigenvectors give a sub optimal description of the population density. So far only attempts have been made to reduce the bias in the sample eigenvalues. However, because the sample eigenvectors differ from the population eigenvectors as well, the population eigenvalues are biased estimates of the variances along the ...

متن کامل

Cross-Validated C4.5: Using Error Estimation for Automatic Parameter Selection

Machine learning algorithms for supervised learning are in wide use. An important issue in the use of these algorithms is how to set the parameters of the algorithm. While the default parameter values may be appropriate for a wide variety of tasks, they are not necessarily optimal for a given task. In this paper, we investigate the use of cross-validation to select parameters for the C4.5 decis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2019

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2019.1668794