Improved Non-Local Means Algorithm for Image Denoising
نویسندگان
چکیده
منابع مشابه
Comparative Study of Non-local Means and Fast Non –local Means Algorithm for Image Denoising
Visual information transmitted in the form of digital images is becoming a major method of communication in the modern age. All digital images contain some degree of noise. Removing noise from the original signal is still a challenging problem for researchers. In this paper, the non-local denoising approach presented by Buades et al. is compared and analyzed by Fast nonlocal means algorithm. Th...
متن کاملAn Improved Non-local Denoising Algorithm
Recently, the NLMeans filter has been proposed by Buades et al. for the suppression of white Gaussian noise. This filter exploits the repetitive character of structures in an image, unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Even though the method is quite intuitive and potentially very powerful, the PSNR and visual results are somewhat inferior ...
متن کاملNon-Local Means Denoising
We present in this paper a new denoising method called non-local means. The method is based on a simple principle: replacing the color of a pixel with an average of the colors of similar pixels. But the most similar pixels to a given pixel have no reason to be close at all. It is therefore licit to scan a vast portion of the image in search of all the pixels that really resemble the pixel one w...
متن کاملRobust non-local means filter for ultrasound image denoising
This paper introduces a new approach to non-local means image denoising. Instead of using all pixels located in the search window for estimating the value of a pixel, we identify the highly corrupted pixels and assign less weight to these pixels. This method is called robust non-local means. Numerical and subjective evaluations using ultrasound images show good performances of the proposed deno...
متن کاملNon-local Means for Stereo Image Denoising Using Structural Similarity
We present a novel stereo image denoising algorithm. Our algorithm takes as an input a pair of noisy images of an object captured form two different directions. We use the structural similarity index as a similarity metric for identifying locations of similar patches in the input images. We adapt the Non-Local Means algorithm for denoising collected patches from the input images. We validate ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and Communications
سال: 2015
ISSN: 2327-5219,2327-5227
DOI: 10.4236/jcc.2015.34003