Improved local convergence of Newton’s method under weak majorant condition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Convergence of Newton’s Method Under a Weak Gamma Condition

We provide a local convergence analysis of Newton’s method under a weak gamma condition on a Banach space setting. It turns out that under the same computational cost and weaker hypotheses than in [4], [5], [7], we can obtain a larger radius of convergence and finer estimates on the distances involved. AMS (MOS) Subject Classification Codes: 65G99, 65B05, 47H17, 49M15.

متن کامل

On Local Convergence Analysis of Inexact Newton Method for Singular Systems of Equations under Majorant Condition

We present a local convergence analysis of inexact Newton method for solving singular systems of equations. Under the hypothesis that the derivative of the function associated with the singular systems satisfies a majorant condition, we obtain that the method is well defined and converges. Our analysis provides a clear relationship between the majorant function and the function associated with ...

متن کامل

Local convergence analysis of inexact Newton-like methods under majorant condition

We provide a local convergence analysis of inexact Newton–like methods in a Banach space setting under flexible majorant conditions. By introducing center–Lipschitz–type condition, we provide (under the same computational cost) a convergence analysis with the following advantages over earlier work [9]: finer error bounds on the distances involved, and a larger radius of convergence. Special cas...

متن کامل

Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds

A local convergence analysis of Inexact Newton’s method with relative residual error tolerance for finding a singularity of a differentiable vector field defined on a complete Riemannian manifold, based on majorant principle, is presented in this paper. We prove that under local assumptions, the inexact Newton method with a fixed relative residual error tolerance converges Q -linearly to a sing...

متن کامل

Local convergence of the Gauss-Newton method for injective-overdetermined systems of equations under a majorant condition

We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2012

ISSN: 0377-0427

DOI: 10.1016/j.cam.2011.10.021