منابع مشابه
Improved Lasso for genomic selection.
Empirical experience with genomic selection in dairy cattle suggests that the distribution of the effects of single nucleotide polymorphisms (SNPs) might be far from normality for some traits. An alternative, avoiding the use of arbitrary prior information, is the Bayesian Lasso (BL). Regular BL uses a common variance parameter for residual and SNP effects (BL1Var). We propose here a BL with di...
متن کاملClassification and Selection of Biomarkers in Genomic Data Using LASSO
High-throughput gene expression technologies such as microarrays have been utilized in a variety of scientific applications. Most of the work has been done on assessing univariate associations between gene expression profiles with clinical outcome (variable selection) or on developing classification procedures with gene expression data (supervised learning). We consider a hybrid variable select...
متن کاملImproved Variable Selection with Forward - Lasso Adaptive Shrinkage
Recently, considerable interest has focused on variable selection methods in regression situations where the number of predictors, p, is large relative to the number of observations, n. Two commonly applied variable selection approaches are the Lasso, which computes highly shrunk regression coefficients, and Forward Selection, which uses no shrinkage. We propose a new approach, “Forward-Lasso A...
متن کاملExclusive Lasso for Multi-task Feature Selection
We propose a novel group regularization which we call exclusive lasso. Unlike the group lasso regularizer that assumes covarying variables in groups, the proposed exclusive lasso regularizer models the scenario when variables in the same group compete with each other. Analysis is presented to illustrate the properties of the proposed regularizer. We present a framework of kernel based multi-tas...
متن کاملThresholded Lasso for High Dimensional Variable Selection
Given n noisy samples with p dimensions, where n " p, we show that the multi-step thresholding procedure based on the Lasso – we call it the Thresholded Lasso, can accurately estimate a sparse vector β ∈ R in a linear model Y = Xβ + ", where Xn×p is a design matrix normalized to have column #2-norm √ n, and " ∼ N(0,σIn). We show that under the restricted eigenvalue (RE) condition (BickelRitov-T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics Research
سال: 2010
ISSN: 0016-6723,1469-5073
DOI: 10.1017/s0016672310000534