Improved error bounds for the Fermat primality test on random inputs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Error Bounds for the Fermat Primality Test on Random Inputs

We investigate the probability that a random odd composite number passes a random Fermat primality test, improving on earlier estimates in moderate ranges. For example, with random numbers to 2200, our results improve on prior estimates by close to 3 orders of magnitude.

متن کامل

Improved Uniform Test Error Bounds

We derive distribution free uniform test error bounds that improve on VC type bounds for validation We show how to use knowledge of test inputs to improve the bounds The bounds are sharp but they require intense computation We introduce a method to trade sharpness for speed of computation Also we compute the bounds for several test cases Key wordsmachine learning learning theory generalization ...

متن کامل

Public-Key Cryptography and Pepin’s Test for the Primality of Fermat Numbers

In this article, we have proved the correctness of the Public-Key Cryptography and the Pepin’s Test for the Primality of Fermat Numbers (F(n) = 22 n + 1). It is a very important result in the IDEA Cryptography that F(4) is a prime number. At first, we prepared some useful theorems. Then, we proved the correctness of the Public-Key Cryptography. Next, we defined the Order’s function and proved s...

متن کامل

Improved error bounds for underdetermined system solvers

The minimal 2-norm solution to an underdetermined system Ax b of full rank can be computed using a QR factorization of AT in two different ways. One method requires storage and reuse of the orthogonal matrix Q, while the method of seminormal equations does not. Existing error analyses show that both methods produce computed solutions whose normwise relative error is bounded to first order by ca...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2018

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3314