Improved detection criteria for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials
نویسندگان
چکیده
منابع مشابه
Multi-dimensional Optimal Order Detection (MOOD) - A very high-order Finite Volume Scheme for conservation laws on unstructured meshes
TheMulti-dimensional Optimal Order Detection (MOOD) method is an original Very High-Order Finite Volume (FV) method for conservation laws on unstructured meshes. The method is based on an a posteriori degree reduction of local polynomial reconstructions on cells where prescribed stability conditions are not fulfilled. Numerical experiments on advection and Euler equations problems are drawn to ...
متن کاملA high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD)
In this paper, we investigate an original way to deal with the problems generated by the limitation process of high-order finite volume methods based on polynomial reconstructions. Multi-dimensional Optimal Order Detection (MOOD) breaks away from classical limitations employed in high-order methods. The proposed method consists of detecting problematic situations after each time update of the s...
متن کاملVery high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations
In this paper we propose the first better than second order accurate method in space and time for the numerical solution of the resistive relativistic magnetohydrodynamics (RRMHD) equations on unstructured meshes in multiple space dimensions. The nonlinear system under consideration is purely hyperbolic and contains a source term, the one for the evolution of the electric field, that becomes st...
متن کاملHigh-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes
For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, wh...
متن کاملA simple construction of very high order non oscillatory compact schemes on unstructured meshes
In [3] have been constructed very high order residual distribution schemes for scalar problems. They were using triangle unstructured meshes. However, the construction was quite involved and was not very flexible. Here, following [1], we develop a systematic way of constructing very high order non oscillatory schemes for such meshes. Applications to scalar and systems problems are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Fluids
سال: 2012
ISSN: 0045-7930
DOI: 10.1016/j.compfluid.2012.05.004