Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review
نویسندگان
چکیده
منابع مشابه
On Portfolio Selection: Improved Covariance Matrix Estimation for Swedish Asset Returns
Mean-Variance (MV) theory for portfolio selection is based on assumptions involving parameters that have to be estimated using historical data. Depending on the method of estimation, the estimates will suffer from estimation error and/or specification error, both of which will effect the portfolio optimization in such a way that the resulting optimal portfolio is not the true optimal portfolio....
متن کاملImproved Estimation of the Covariance Matrix of Stock Returns With an Application to Portfolio Selection
This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators: the sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covari...
متن کاملImproved HAC Covariance Matrix Estimation Based on Forecast Errors
We propose computing HAC covariance matrix estimators based on one-stepahead forecasting errors. It is shown that this estimator is consistent and has smaller bias than other HAC estimators. Moreover, the tests that rely on this estimator have more accurate sizes without sacrificing its power.
متن کاملOptimal Portfolio Selection with Singular Covariance Matrix
In this paper we use the Moore-Penrose inverse in the case of a close to singular and ill-conditioned, or singular variance-covariance matrix, in the classic Portfolio Selection Problem. In this way the possible singularity of the variance-covariance matrix is tackled in an efficient way so that the various application of the Problem to benefit from the numerical tractability of the Moore-Penro...
متن کاملEstimation of Covariance Matrix
Estimation of population covariance matrices from samples of multivariate data is important. (1) Estimation of principle components and eigenvalues. (2) Construction of linear discriminant functions. (3) Establishing independence and conditional independence. (4) Setting confidence intervals on linear functions. Suppose we observed p dimensional multivariate samples X1, X2, · · · , Xn i.i.d. wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Risk and Financial Management
سال: 2019
ISSN: 1911-8074
DOI: 10.3390/jrfm12010048