Improved Consistency Regularization for GANs
نویسندگان
چکیده
Recent work has increased the performance of Generative Adversarial Networks (GANs) by enforcing a consistency cost on discriminator. We improve this technique in several ways. first show that regularization can introduce artifacts into GAN samples and explain how to fix issue. then propose modifications procedure designed its performance. carry out extensive experiments quantifying benefit our improvements. For unconditional image synthesis CIFAR-10 CelebA, yield best known FID scores various architectures. conditional CIFAR-10, we state-of-the-art score from 11.48 9.21. Finally, ImageNet-2012, apply original BigGAN model 6.66 5.38, which is at size.
منابع مشابه
Improved Techniques for Training GANs
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: Our model generates MNIST samples that humans c...
متن کاملImproved generator objectives for GANs
We present a framework to understand GAN training as alternating density ratio estimation, and approximate divergence minimization. This provides an interpretation for the mismatched GAN generator and discriminator objectives often used in practice, and explains the problem of poor sample diversity. Further, we derive a family of generator objectives that target arbitrary f -divergences without...
متن کاملOn the regularization of Wasserstein GANs
Since their invention, generative adversarial networks (GANs) have become a popular approach for learning to model a distribution of real (unlabeled) data. Convergence problems during training are overcome by Wasserstein GANs which minimize the distance between the model and the empirical distribution in terms of a different metric, but thereby introduce a Lipschitz constraint into the optimiza...
متن کاملImproved Training of Wasserstein GANs
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only poor samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the cri...
متن کاملImproving the Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect
Despite being impactful on a variety of problems and applications, the generative adversarial nets (GANs) are remarkably difficult to train. This issue is formally analyzed by Arjovsky & Bottou (2017), who also propose an alternative direction to avoid the caveats in the minmax two-player training of GANs. The corresponding algorithm, called Wasserstein GAN (WGAN), hinges on the 1-Lipschitz con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i12.17317