Improved Artificial Bee Colony Algorithm Based Gravity Matching Navigation Method
نویسندگان
چکیده
منابع مشابه
Improved Artificial Bee Colony Algorithm Based Gravity Matching Navigation Method
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for h...
متن کاملA KFCM Algorithm Based on Improved Artificial Bee Colony Algorithm
Kernel fuzzy C-mean clustering (KFCM) algorithm is effective for high-dimensional data, but this algorithm has some defects of sensitivity to initialization and local optima. Artificial Bee Colony (ABC) algorithm is based on intelligent behaviors of honey bee swarm. It has the properties of strong global optimization and fast convergence speed. A KFCM algorithm based on improved ABC is proposed...
متن کاملElite Opposition-based Artificial Bee Colony Algorithm for Global Optimization
Numerous problems in engineering and science can be converted into optimization problems. Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has been widely used in many areas. However, due to the stochastic characteristics of its solution search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this weakness o...
متن کاملImproved Onlooker Bee Phase in Artificial Bee Colony Algorithm
Artificial Bee Colony (ABC) is a distinguished optimization strategy that can resolve nonlinear and multifaceted problems. It is comparatively a straightforward and modern population based probabilistic approach for comprehensive optimization. In the vein of the other population based algorithms, ABC is moreover computationally classy due to its slow nature of search procedure. The solution exp...
متن کاملA Novel Multiobjective Optimization Method Based on Improved Artificial Bee Colony Algorithm
In order to improve the convergence and diversity of multiobjective optimization algorithms, the harmonic average distance is employed to improve the aggregating function combined L-rank value. Selection model and searching scheme of artificial bee colony algorithm and diversity maintaining scheme are improved in this paper. This novel many objectives optimization method based on improved artif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2014
ISSN: 1424-8220
DOI: 10.3390/s140712968