Imprecise random variables, random sets, and Monte Carlo simulation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imprecise random variables, random sets, and Monte Carlo simulation

The paper addresses the evaluation of upper and lower probabilities induced by functions of an imprecise random variable. Given a function g and a family Xλ of random variables, where the parameter λ ranges in an index set Λ, one may ask for the upper/lower probability that g(Xλ ) belongs to some Borel set B. Two interpretations are investigated. In the first case, the upper probability is comp...

متن کامل

Monte Carlo Simulation of Correlated Random Variables

This paper describes a method for the Monte Carlo simulation of two correlated random variables. The author analyses linear combinations of stochastically independent random variables that are equally distributed over the interval (0; 1) (\random numbers") and also examines their distribution. If a suitable matrix of coeecients is chosen, the subsequent transformation results in random variable...

متن کامل

Simulations of Continuous Random Variables and Monte Carlo Methods

In this paper we describe algorithms for computer simulations of some common continuous distributions and their implementation in MATLAB. We use Monte Carlo methods for estimating probabilities and other characteristics of random variables. The paper concludes with some interesting applications. AMS SUBJECT CLASSIFICATION: 60E05, 60G99, 60J10, 65C05, 65C60.

متن کامل

Guaranteed Monte Carlo Methods for Bernoulli Random Variables

Simple Monte Carlo is a versatile computational method with a convergence rate of O(n−1/2). It can be used to estimate the means of random variables whose distributions are unknown. Bernoulli random variables, Y , are widely used to model success (failure) of complex systems. Here Y = 1 denotes a success (failure), and p = E(Y ) denotes the probability of that success (failure). Another applica...

متن کامل

Random Sequential Adsorption, Series Expansion and Monte Carlo Simulation

Random sequential adsorption is an irreversible surface deposition of extended objects. In systems with continuous degrees of freedom coverage follows a power law, θ(t) ≈ θJ−c t , where the exponent α depends on the geometric shape (symmetry) of the objects. Lattice models give typically exponential saturation to jamming coverage. We discuss how such function θ(t) can be computed by series expa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 2016

ISSN: 0888-613X

DOI: 10.1016/j.ijar.2016.06.012