IMPLEMENTASI FUZZY C-MEANS CLUSTERING DALAM PENGELOMPOKAN UMKM DI KELURAHAN PANGONGANGAN KOTA MADIUN

نویسندگان

چکیده

Logika fuzzy adalah salah satu komponen yang membentuk komputasi lunak, merupakan cara mudah untuk memetakan ruang input ke output. Dalam banyak kasus, logika digunakan menyelesaikan masalah dari hingga sering hal ini Fuzzy C-Means Clustering akan dalam jurnal ini. CMeans (FCM) atau dikenal dengan ISODATA bagian metode KMeans. Derajat keberadaan data suatu kelas kelompok ditentukan oleh derajat keanggotaannya. cluster ing UMKM di Kelurahan Pangongangan Kota Madiun . Berdasarkan hasil implementasi dan pengujian sistem, penerapan clustering mampu mengidentifikasi menggunakan variabel berupa penggajian, aset jumlah pegawai serta sekumpulan group. terdaftar menunjukkan bahwa mayoritas Desa termasuk Golongan 1

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Relative entropy fuzzy c-means clustering

Pattern recognition is a collection of computer techniques to classify various observations into different clusters of similar attributes in either supervised or unsupervised manner. Application of fuzzy logic to unsupervised classification or clustering methods has resulted in many wildly used techniques such as fuzzy c-means (FCM) method. However, when the observations are too noisy, the perf...

متن کامل

Integrating Fuzzy c-Means Clustering with PostgreSQL

Many data sets to be clustered are stored in relational databases. Having a clusterization algorithm implemented in SQL provides easier clusterization inside a relational DBMS than outside with some alternative tools. In this paper we propose Fuzzy c-Means clustering algorithm adapted for PostgreSQL open-source relational DBMS.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Power Elektronik: Jurnal Orang Elektro

سال: 2022

ISSN: ['2715-5064']

DOI: https://doi.org/10.30591/polektro.v12i1.3713