Impartial trimmed k-means for functional data
نویسندگان
چکیده
منابع مشابه
Impartial trimmed means for functional data
In this paper we extend the notion of impartial trimming to a functional data framework, and we obtain resistant estimates of the center of a functional distribution. We give mild conditions for the existence and uniqueness of the functional trimmed means. We show the continuity of the population parameter with respect to the weak convergence of probability measures. As a consequence we obtain ...
متن کاملCanonical k-Means Clustering for Functional Data
Thaddeus Tarpey and Eva Petkova 1 Department Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, [email protected]. 2 Department of Child and Adolescent Psychiatry, New York University, New York, NY 10016-6023 Abstract Cluster analysis is a powerful tool for discovering sources of heterogeneity in data. However, clinically interesting sources of heterogeneity, such...
متن کاملA distributed framework for trimmed Kernel k-Means clustering
Data clustering is an unsupervised learning task that has found many applications in various scientific fields. The goal is to find subgroups of closely related data samples (clusters) in a set of unlabeled data. Kernel k-Means is a state of the art clustering algorithm. However, in contrast to clustering algorithms that can work using only a limited percentage of the data at a time, Kernel k-M...
متن کاملPersistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm
Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...
متن کاملOn Weighted Randomly Trimmed Means
A class of robust location estimators called weighted randomly trimmed means are introduced and not only their consistency and asymptotic normality are proved, but their influence functions, asymptotic variances and breakdown points are also derived. They possess the same breakdown points as the median, and some of them own higher asymptotic relative efficiencies at the heavy-tailed distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2007
ISSN: 0167-9473
DOI: 10.1016/j.csda.2006.07.011