Immersed hypersurfaces with constant Weingarten curvature
نویسندگان
چکیده
منابع مشابه
Hypersurfaces with Constant Scalar Curvature
Let M be a complete two-dimensional surface immersed into the three-dimensional Euclidean space. Then a classical theorem of Hilbert says that when the curvature of M is a non-zero constant, M must be the sphere. On the other hand, when the curvature of M is zero, a theorem of Har tman-Nirenberg [4] says that M must be a plane or a cylinder. These two theorems complete the classification of com...
متن کاملCurvature Estimates for Weingarten Hypersurfaces in Riemannian Manifolds
We prove curvature estimates for general curvature functions. As an application we show the existence of closed, strictly convex hypersurfaces with prescribed curvature F , where the defining cone of F is Γ+. F is only assumed to be monotone, symmetric, homogeneous of degree 1, concave and of class C, m ≥ 4.
متن کاملConstant Mean Curvature Hypersurfaces with Constant Δ-invariant
We completely classify constant mean curvature hypersurfaces (CMC) with constant δ-invariant in the unit 4-sphere S 4 and in the Euclidean 4-space E 4 .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Annalen
سال: 1989
ISSN: 0025-5831,1432-1807
DOI: 10.1007/bf01446438