IMAGES OF WORD MAPS IN ALMOST SIMPLE GROUPS AND QUASISIMPLE GROUPS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Images of Word Maps in Finite Simple Groups

In response to questions by Kassabov, Nikolov and Shalev, we show that a given subset A of a finite simple group G is the image of some word map w : G×G → G if and only if (i) A contains the identity and (ii) A is invariant under Aut(G).

متن کامل

OD-characterization of almost simple groups related to U3(11)

Let $L := U_3(11)$. In this article, we classify groups with the same order and degree pattern as an almost simple group related to $L$. In fact, we prove that $L$, $L:2$ and $L:3$ are OD-characterizable, and $L:S_3$ is $5$-fold OD-characterizable.

متن کامل

On finitely generated profinite groups, II: products in quasisimple groups

We prove two results. (1) There is an absolute constant D such that for any finite quasisimple group S, given 2D arbitrary automorphisms of S, every element of S is equal to a product of D ‘twisted commutators’ defined by the given automorphisms. (2) Given a natural number q, there exist C = C(q) and M = M(q) such that: if S is a finite quasisimple group with |S/Z(S)| > C, βj (j = 1, . . . ,M) ...

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

od-characterization of almost simple groups related to u3(11)

let l := u3(11). in this article, we classify groups with the same order and degree pattern as an almost simple group related to l. in fact, we prove that l, l:2 and l:3 are od-characterizable, and l:s3 is 5-fold od-characterizable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2014

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196714500040