Identifying tumor clones in sparse single-cell mutation data
نویسندگان
چکیده
منابع مشابه
Identifying Rare Classes with Sparse Training Data
Building models and learning patterns from a collection of data are essential tasks for decision making and dissemination of knowledge. One of the common tools to extract knowledge is to build a classifier. However, when the training dataset is sparse, it is difficult to build an accurate classifier. This is especially true in biological science, as biological data are hard to produce and error...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملA Graph-Based Clustering Approach to Identify Cell Populations in Single-Cell RNA Sequencing Data
Introduction: The emergence of single-cell RNA-sequencing (scRNA-seq) technology has provided new information about the structure of cells, and provided data with very high resolution of the expression of different genes for each cell at a single time. One of the main uses of scRNA-seq is data clustering based on expressed genes, which sometimes leads to the detection of rare cell populations. ...
متن کاملIdentifying Single Clusters in Large Data Sets
Most clustering methods have to face the problem of characterizing good clusters among noise data. The arbitrary noise points that just do not belong to any class being searched for are of a real concern. The outliers or noise data points are data that severely deviate from the pattern set by the majority of the data, and rounding and grouping errors result from the inherent inaccuracy in the c...
متن کاملSingle-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor
Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer and has very few mutations that are shared between different patients. To better understand the intratumoral genetics underlying mutations of ccRCC, we carried out single-cell exome sequencing on a ccRCC tumor and its adjacent kidney tissue. Our data indicate that this tumor was unlikely to have resulted from mutations in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2020
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btaa449