Identifying the Growth Modulon of Corynebacterium glutamicum
نویسندگان
چکیده
منابع مشابه
Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation.
Corynebacterium glutamicum, a model organism in microbial biotechnology, is known to metabolize glucose under oxygen-deprived conditions to l-lactate, succinate, and acetate without significant growth. This property is exploited for efficient production of lactate and succinate. Our detailed analysis revealed that marginal growth takes place under anaerobic conditions with glucose, fructose, su...
متن کاملAnalysis of the Corynebacterium glutamicum dapA promoter.
Deletion and mutational analysis of the promoter P-dapA from Corynebacterium glutamicum was performed to identify regions and particular nucleotides important for its function. An extended -10 region and a stretch of six T's at positions -55 to -50 were found to be the most important elements in the promoter function. The results of mutational analysis of P-dapA are consistent with the conclusi...
متن کاملThe DtxR regulon of Corynebacterium glutamicum.
Previous studies with Corynebacterium diphtheriae and Mycobacterium species revealed that the transcriptional regulator DtxR and its ortholog IdeR play a central role in the control of iron metabolism. In the present work, we used genome-based approaches to determine the DtxR regulon of Corynebacterium glutamicum, a nonpathogenic relative of C. diphtheriae. First, global gene expression of a dt...
متن کاملEmerging Corynebacterium glutamicum systems biology.
Corynebacterium glutamicum is widely used for the biotechnological production of amino acids. Amino acid producing strains have been improved classically by mutagenesis and screening as well as in a rational manner using recombinant DNA technology. Metabolic flux analysis may be viewed as the first systems approach to C. glutamicum physiology since it combines isotope labeling data with metabol...
متن کاملTryptophan-Producing Corynebacterium glutamicum Strain
The aromatic amino acids are synthesized via a common biosynthetic pathway. A tryptophan-producing mutant of Corynebacterium glutamicum was genetically engineered to produce tyrosine or phenylalanine in abundance. To achieve this, three biosynthetic genes encoding the first enzyme in the common pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DS), and the branch-point enzymes chor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Microbiology
سال: 2019
ISSN: 1664-302X
DOI: 10.3389/fmicb.2019.00974