Identifikasi Jenis Font Menggunakan Metode Genetic Modified K-Nearest Neighbor
نویسندگان
چکیده
منابع مشابه
A Modified Editing k-nearest Neighbor Rule
Classification of objects is an important area in a variety of fields and applications. Many different methods are available to make a decision in those cases. The knearest neighbor rule (k-NN) is a well-known nonparametric decision procedure. Classification rules based on the k-NN have already been proposed and applied in diverse substantive areas. The editing k-NN proposed by Wilson would be ...
متن کاملA Modified K-Nearest Neighbor Algorithm Using Feature Optimization
A classification technique is an organized approach for building classification model from given input dataset. The learning algorithm of each technique is employed to build a model used to find the relationship between attribute set and class label of the given input data. Presence of irrelevant information in the data set reduces the speed and quality of learning. The technique of feature sel...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملFast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph
We introduce a new nearest neighbor search algorithm. The algorithm builds a nearest neighbor graph in an offline phase and when queried with a new point, performs hill-climbing starting from a randomly sampled node of the graph. We provide theoretical guarantees for the accuracy and the computational complexity and empirically show the effectiveness of this algorithm.
متن کاملUnsupervised K-Nearest Neighbor Regression
In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal Rekayasa Hijau
سال: 2020
ISSN: 2579-4264,2550-1070
DOI: 10.26760/jrh.v4i3.157-166