Hypersurfaces that are not stably rational

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersurfaces that are not stably rational

A fundamental problem of algebraic geometry is to determine which varieties are rational, that is, isomorphic to projective space after removing lower-dimensional subvarieties from both sides. In particular, we want to know which smooth hypersurfaces in projective space are rational. An easy case is that smooth complex hypersurfaces of degree at least n + 2 in P are not covered by rational curv...

متن کامل

Rational hypersurfaces with rational convolutions

The aim of this article is to focus on the investigation of such rationally parametrized hypersurfaces which admit rational convolution (RC) generally, or in some special cases. Examples of such hypersurfaces are presented and their properties are discussed. We also aim to examine links between well-known curves and surfaces (PH/PN or LN) and general objects defined and explored in this article...

متن کامل

Rational Points on Cubic Hypersurfaces That Split off a Form

— Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over Q. We show that X(Q) is non-empty provided that the cubic form defining X can be written as the sum of two forms that share no common variables.

متن کامل

Decomposing Envelopes of Rational Hypersurfaces

The envelope of a family of real, rational hypersurfaces is defined by an implicit equation in the parameter space. This equation can be decomposed into factors that are mapped to varieties of different dimension. The factorization can be found using solely gcd computations and polynomial divisions. The decomposition is used to derive some general results about envelopes, which also contribute ...

متن کامل

Counting Rational Points on Hypersurfaces

For any n ≥ 2, let F ∈ Z[x1, . . . , xn] be a form of degree d ≥ 2, which produces a geometrically irreducible hypersurface in P. This paper is concerned with the number N(F ; B) of rational points on F = 0 which have height at most B. For any ε > 0 we establish the estimate N(F ; B) = O(B), whenever either n ≤ 5 or the hypersurface is not a union of lines. Here the implied constant depends at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Mathematical Society

سال: 2015

ISSN: 0894-0347,1088-6834

DOI: 10.1090/jams/840