Hyperstability of the k -Cubic Functional Equation in Non-Archimedean Banach Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized hyperstability of the cubic functional equation in ultrametric spaces

‎In this paper‎, ‎we present the‎ generalized hyperstability results of cubic functional equation in‎ ‎ultrametric Banach spaces using the fixed point method‎.

متن کامل

On Approximate Solutions of the Generalized Radical Cubic Functional Equation in Quasi-$beta$-Banach Spaces

In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the generalized radical cubic functional equation[    fleft( sqrt[3]{ax^3 + by^3}right)=af(x) + bf(y),]    where $a,b in mathbb{R}_+$ are fixed positive real numbers, by using direct method in quasi-$beta$-Banach spaces. Moreover, we use subadditive functions to investigate stability of the generaliz...

متن کامل

Stability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.

متن کامل

Nonlinear Stability of the Cubic Functional Equation in Non-archimedean Random Normed Spaces

In this paper, the nonlinear stability of a functional equation in the setting of non-Archimedean normed spaces is proved. Furthermore, the interdisciplinary relation among the theory of random spaces, the theory of non-Archimedean space, the and the theory of functional equations are also presented Key word: Hyers Ulam Rassias stability • cubic mappings • generalized normed space • Banach spac...

متن کامل

Generalized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces

In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2020

ISSN: 2314-4785,2314-4629

DOI: 10.1155/2020/8843464