Hypercomplex eight-dimensional nilpotent Lie groups
نویسندگان
چکیده
منابع مشابه
Hypercomplex Structures on Four-dimensional Lie Groups
The purpose of this paper is to classify invariant hypercomplex structures on a 4-dimensional real Lie group G. It is shown that the 4dimensional simply connected Lie groups which admit invariant hypercomplex structures are the additive group H of the quaternions, the multiplicative group H∗ of nonzero quaternions, the solvable Lie groups acting simply transitively on the real and complex hyper...
متن کاملCurvature in Nilpotent Lie Groups
Colloq. Algebraic Topology, 1962, pp. 104-113, Matematisk Institut, Aarhus Universitet, Denmark. 4. M. F. Atiyah, Thorn complexes, Proc. London Math. Soc. (3) 11 (1961), 291310. 5. M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342-353. 6. Sze-Tsen Hu, Homotopy theory, Pure and Applied Mathematics VIII, Academic Press, New York and London, 195...
متن کاملApproximate Multiplicative Groups in Nilpotent Lie Groups
We generalize a result of Tao which describes approximate multiplicative groups in the Heisenberg group. We extend it to simply connected nilpotent Lie groups of arbitrary step.
متن کاملAffine Actions on Nilpotent Lie Groups
To any connected and simply connected nilpotent Lie group N , one can associate its group of affine transformations Aff(N). In this paper, we study simply transitive actions of a given nilpotent Lie group G on another nilpotent Lie group N , via such affine transformations. We succeed in translating the existence question of such a simply transitive affine action to a corresponding question on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2003
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(03)00104-x